Seismic processing relies heavily on accurate subsurface velocity models to create clear images of geological structures. Traditionally, constructing these models has been a time-consuming and iterative process, often relying on expert interpretation and manual adjustments. Raw shot gathers, the unprocessed seismic data collected in the field, contain valuable information about subsurface velocities. Modern computational techniques leverage this raw data, applying machine learning algorithms to automatically extract patterns and build robust velocity models. This automated approach can analyze the complex waveforms within the gathers, identifying subtle variations that indicate changes in velocity. For example, algorithms might learn to recognize how specific wavefront characteristics relate to underlying rock properties and use this knowledge to infer velocity changes.
Automated construction of these models offers significant advantages over traditional methods. It reduces the time and human effort required, leading to more efficient exploration workflows. Furthermore, the application of sophisticated algorithms can potentially reveal subtle velocity variations that might be overlooked by manual interpretation, resulting in more accurate and detailed subsurface images. This improved accuracy can lead to better decision-making in exploration and production activities, including more precise well placement and reservoir characterization. While historically, model building has relied heavily on human expertise, the increasing availability of computational power and large datasets has paved the way for the development and application of data-driven approaches, revolutionizing how these crucial models are created.